AllMaths | Learn Math with Us

Aims

The national curriculum for mathematics aims to ensure that all pupils:

  • become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately
  • reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
  • can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils’ understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

What is expected to learn in Key Stages 1 and 2:

The principal focus of mathematics teaching in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the 4 operations, including with practical resources [for example, concrete objects and measuring tools].At this stage, pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Teaching should also involve using a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time and money.By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency.Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at key stage 1.The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the 4 operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.At this stage, pupils should develop their ability to solve a range of problems, including with simple fractions and decimal place value. Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number.By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work.Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word-reading knowledge and their knowledge of spelling.The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them.By the end of year 6, pupils should be fluent in written methods for all 4 operations, including long multiplication and division, and in working with fractions, decimals and percentages.Pupils should read, spell and pronounce mathematical vocabulary correctly.

Subject Content:

  • Number – number and place value
  • Number – addition and subtraction
  • Number – multiplication and division
  • Number – fractions(including decimals and percentages)
  • Ratio and proportion
  • Algebra
  • Measurement
  • Geometry – properties of shapes
  • Geometry – position and direction
  • Statistics
Download Curiculum for Stages 1 and 2: Download

What is expected to learn in Key Stage 3:

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programme of study for key stage 3 is organised into apparently distinct domains, but pupils should build on key stage 2 and connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge in science, geography, computing and other subjects.Decisions about progression should be based on the security of pupils’ understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content in preparation for key stage 4. Those who are not sufficiently fluent should consolidate their understanding, including through additional practice, before moving on.Through the mathematics content, pupils should be taught to:

Develop Fluency

  • consolidate their numerical and mathematical capability from key stage 2 and extend their understanding of the number system and place value to include decimals, fractions, powers and roots
  • select and use appropriate calculation strategies to solve increasingly complex problems
  • use algebra to generalise the structure of arithmetic, including to formulate mathematical relationships
  • substitute values in expressions, rearrange and simplify expressions, and solve equations
  • move freely between different numerical, algebraic, graphical and diagrammatic representations [for example, equivalent fractions, fractions and decimals, and equations and graphs]
  • develop algebraic and graphical fluency, including understanding linear and simple quadratic functions
  • use language and properties precisely to analyse numbers, algebraic expressions, 2-D and 3-D shapes, probability and statistics

Reason Mathematically

  • extend their understanding of the number system; make connections between number relationships, and their algebraic and graphical representations
  • extend and formalise their knowledge of ratio and proportion in working with measures and geometry, and in formulating proportional relations algebraically
  • identify variables and express relations between variables algebraically and graphically
  • make and test conjectures about patterns and relationships; look for proofs or counter-examples
  • begin to reason deductively in geometry, number and algebra, including using geometrical constructions
  • interpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning
  • explore what can and cannot be inferred in statistical and probabilistic settings, and begin to express their arguments formally

Solve Problems

  • develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems
  • develop their use of formal mathematical knowledge to interpret and solve problems, including in financial mathematics
  • begin to model situations mathematically and express the results using a range of formal mathematical representations
  • select appropriate concepts, methods and techniques to apply to unfamiliar and non-routine problems

Subject Content:

  • Number
  • Algebra
  • Ratio, proportions and rates of change
  • Geometry and measures
  • Probability
  • Statistics
Download Curiculum for Stage 3: Download

What is expected to learn in Key Stage 4:

This programme of study specifies: the mathematical content that should be taught to all pupils, in standard type additional mathematical content to be taught to more highly attaining pupils, in braces Together, the mathematical content set out in the key stage 3 and key stage 4 programmes of study covers the full range of material contained in the GCSE Mathematics qualification. Wherever it is appropriate, given pupils’ security of understanding and readiness to progress, pupils should be taught the full content set out in this programme of study.Through the mathematics content, pupils should be taught to:

Develop Fluency

  • consolidate their numerical and mathematical capability from key stage 2 and extend their understanding of the number system and place value to include decimals, fractions, powers and roots {and fractional indices}
  • select and use appropriate calculation strategies to solve increasingly complex problems, including exact calculations involving multiples of π {and surds}, use of standard form and application and interpretation of limits of accuracy
  • consolidate their algebraic capability from key stage 3 and extend their understanding of algebraic simplification and manipulation to include quadratic expressions, {and expressions involving surds and algebraic fractions}
  • extend fluency with expressions and equations from key stage 3, to include quadratic equations, simultaneous equations and inequalities
  • move freely between different numerical, algebraic, graphical and diagrammatic representations, including of linear, quadratic, reciprocal, {exponential and trigonometric} functions
  • use mathematical language and properties precisely

Reason Mathematically

  • extend and formalise their knowledge of ratio and proportion, including trigonometric ratios, in working with measures and geometry, and in working with proportional relations algebraically and graphically
  • extend their ability to identify variables and express relations between variables algebraically and graphically
  • make and test conjectures about the generalisations that underlie patterns and relationships; look for proofs or counter-examples; begin to use algebra to support and construct arguments {and proofs}
  • reason deductively in geometry, number and algebra, including using geometrical constructions
  • interpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning
  • explore what can and cannot be inferred in statistical and probabilistic settings, and express their arguments formally
  • assess the validity of an argument and the accuracy of a given way of presenting information

Solve Problems

  • develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems
  • develop their use of formal mathematical knowledge to interpret and solve problems, including in financial mathematics
  • make and use connections between different parts of mathematics to solve problems
  • model situations mathematically and express the results using a range of formal mathematical representations, reflecting on how their solutions may have been affected by any modelling assumptions
  • select appropriate concepts, methods and techniques to apply to unfamiliar and non-routine problems; interpret their solution in the context of the given problem

Subject Content:

  • Number
  • Algebra
  • Ratio, proportions and rates of change
  • Geometry and measures
  • Probability
  • Statistics
Download Curiculum for Stage 4: Download